* X %
S HILCITEY -
Austria-Czech Republic

Européan Regional Development Fund

* *
* 5 Kk

EUROPEAN UNION

ATCZ175 INTEROP PROJECT

Interference Measurement Setup

Institute of Electrodynamics, Microwave and Circuit Engineering
TECHNISCHE UNIVERSITAT WIEN

Advisor:
Assoc. Prof. Dipl.-Ing. Dr.techn. Holger ARTHABER

by
Proj. Ass. Dipl.-Ing. Christian SPINDELBERGER

October 9, 2019

EITILE

Contents

1 Introduction il
2 Test Setup
2.1 Measurement Setup Considerations,
2.2 Performance Measurements
3 Injecting WLAN Frames with Linux
4 Modulated Noise [T
4.1 Simulation Model
4.2 Implementation of a Low-Cost Interference Source 13
References 15

Abbreviations

AWGN additive white Gaussian noise
BLE Bluetooth low energy

CP cyclic prefix

DSSS direct spread spectrum sequence
FFT fast Fourier transform

IoT internet of things

ISM industrial, scientific, and medical
IFFT inverse fast Fourier transform
MAC medium access control

MF matched filter

OFDM orthogonal frequency division multiplexing
PAPR peak-to-average power ratio
PER packet error rate

PHY physical

Q-Q quantile-quantile

RF radio frequency

RTS request to send

SINR . signal to interference plus noise ratio
TCP transmission control protocol
UDP user datagram protocol

VSG vector signal generator

WLAN wireless local area network

i

1 Introduction

In this document the realization of a wireless local area network (WLAN) test setup, which
is capable of emulating and measuring interference perturbations, is discussed.

At the beginning, the setup and related components are characterized in Section [2] Note
that an instruction guide for an appropriate installation and use of the test setup can be
found on InterOp homepageﬂ Several alternative interference sources, replacing expensive
radio frequency (RF) equipment, are investigated. Section [3| treats the implementation
of a Linux PC system injecting interfering signals and emerging issues. Furthermore,
another interference source, utilizing modulated noise, is introduced in Section[d] A simple
simulation model will compare different interferers, i.e., WLAN DSSS, OFDM, and BLE, to
modulated noise. At last, a low-cost implementation of an interference source, modulating
noise with the corresponding random variables from the measurement campaign, will be
presented.

Port 1 Port 2
Server """" Coupl AttenUator// ‘‘‘‘‘ Client ™
i F — Y oupler if = G

Figure 1: WLAN test setup: block diagram (top), realized arrangement (bottom) with the
utilized interference sources (noise source with additional power supply & VSG)

http://www.interreg-interop.eu/fileadmin/t/InterOp/WLAN_instruction_guide_new.pdf

http://www.interreg-interop.eu/fileadmin/t/InterOp/WLAN_instruction_guide_new.pdf

2 Test Setup

Regarding WLAN systems, interference causes perturbations by impairing the throughput,
packet error rate (PER), retransmissions, and packet delay (jitter). Hence, a test setup
(Figure 1)) has been created to examine different interference sources by measuring typical
performance parameters.

The test arrangement consists of two independent Linux PC systems (server and client)
with implemented WLAN modules. They are connected with coaxial cables, combined by
a directional coupler and a variable attenuator. Lastly, an interference source, which is
connected through the coupler, completes the setup. Details about the utilized components
can be found in Table [

Component Manufacturer Description
WLAN modules Atheros WLE900OVX
Coupler Krytar MODEL 1850
Attenuator Mini Circuits RCDAT-6000-60
VSG Rohde und Schwarz SMBV100A

Table 1: WLAN test setup: list of utilized components

The coupler guides the signal from the interference source to the server. This scenario
recalls the hidden node problem. The client starts a transmission and the server receives
available packets while the data exchange is corrupted by interference. Through the addi-
tional insertion loss maintained by the attenuator, the range between client and server can
be changed. The adaptation of the range can be interpreted by changing the distance be-
tween transmitter (client) and receiver (server). Small ranges relate to close distances and
vice versa. Thus, the setup realizes a hidden node scenario with variable ranges between
client and server.

Furthermore, the interference source is assumed to be blind to any surrounding traffic
established between server and client. It simply injects interference signals without any
collision avoidance schemes. internet of things (IoT) systems typically exchange a low
amount of data, resulting in a small packet size. The request to send (RTS) threshold is
therefore deactivated. The fact that the traffic, caused by the interference source, does
not have to respond to RTS-CTS transactions, justifies the hidden node model. It must
be mentioned that the isolation realized by the coupler is not infinite. Consequently, the
transmitter will receive an amount of interference signals even for a high attenuation.

Figure [2| depicts the relevant S-parameters according to Figure[l|for an attenuation of 0 dB.

0
-10\
20 E
-30

o
=
o 40 f
E I
S0 | [s/\\ /\ "aVA a
IS [\ 1\ \ WARWIER m /
s Voo \foN N VY
eor || VoV
v | | | \‘
| ‘\‘\‘ ‘\‘\‘ |
70t ‘ |
521 H “ !
80 F S .
S13
-90

1 15 2 2.5 3 35 4 4.5 5 55 6
f (GHz)

Figure 2: S-parameters of the WLAN test setup: server (port 1), client (port 2), interference
source (port 3)

2.1 Measurement Setup Considerations

In the following, occurred issues, leading to the actual test setup (Figure [1)), will be dis-
cussed. First of all it will be explained, why two separate Linux PCs have been used.
Indeed, common PCs offer several PCIe| interfaces to connect multiple module extensions.

Unfortunately, some issues made it impossible to realize the measurement setup with one
PC.

Firmware Issues

To establish a connection between two WLAN modules, an access point (server) and a
station (client) have to be configured. In the WLAN configuration guide, it is explained
how an association can be established, but utilizing these instructions does not succeed
using a single PC, for several reasons.

First of all, it was not possible to mount two identical modules within one PC and con-
figure them individually. The firmware boot loader had problems with loading the desired

2Peripheral component interconnect express (PCle) is a high-speed serial computer expansion bus
standard, connecting extensions like WLAN modules.

firmware onto the WLAN modules separately. Therefore, network namespaces were im-
plemented circumventing this problem. Namespaces have the capability to isolate single
modules seen by the kernel, making it possible to configure them individually. By im-
plementing this technique, it is possible to set up the two WLAN modules as server and
client establishing a valid connection. Unfortunately, the Linux PC system was not able
to accomplish performance tests with typical programs. Starting such a test always led to
an immediate shut down of the whole system. As the speed of the shut down was very
fast, similar to unplugging the power supply, the hardware functionality has been inspected
carefully. In addition to this, the IP routing table and the MAC addresses have been veri-
fied correctly, but this behavior could not be clarified. Consequently, two separate Linux
PC systems were inevitable.

Crosstalk Issues

Using two separate Linux PC systems made it possible to establish a valid connection and
to accomplish performance tests, but another problem arose concerning crosstalk. The two
systems were capable to associate with each other and exchange data without any cable or
antenna connected. The transmit power of WLAN modules in Europe is limited to 20 dBm
in the 2.4 GHz industrial, scientific, and medical (ISM) band. Utilizing this high power
level makes it possible to overcome large distances of a few hundred meters. Therefore, it
is necessary to decrease the output power to a minimum of 0dBm. At this power level,
the two Linux PC systems are not able to maintain an association anymore. Nevertheless,
further crosstalk effects due to insufficient decoupling, causing signal leakage over power
supplies and wired LAN routers, are presumed.

7 Server Attenuator o Chent
/ m % Coupler (a) Coupler / ‘]

Circulator

T Power-
/" Interference ™, splitter

Source ./

Figure 3: Alternative WLAN test setup

Scenario Issues

The introduced measurement setup refers to the hidden node problem (Figure . Another
interesting scenario is to simulate WLAN stations which are close to each other, receiving
the same interference signals. Therefore, an additional test arrangement was created and
analyzed. Figure |3 depicts the setup in detail. It consists of two couplers, two circulators,
one attenuator, and a power splitter. The power splitter divides the interference source
signal into two paths. Each path is followed by a circulator and a coupler. As before, the
coupler provides isolation towards the counterpropagating path to separate the injected
interference. Furthermore, the circulators ensure, through their nonreciprocal behavior,
that the established traffic between server and client is not passed through the interference
source connection network.

It turned out that this realization is impractical. The insertion loss between the interference
source and the WLAN stations had an intolerable ripple, which could not be calibrated.
The variations within one WLAN channel, at a bandwidth of 20 MHz, led to critical dis-
tortions of the interferer power spectral density. Therefore, this approach was discarded
and the focus was put on the hidden node scenario.

2.2 Performance Measurements

In order to analyze interference effects, a network performance tool called iperf was uti-
lized to establish a data transfer between server and client. iperf enables measuring, for
instance, the throughput of an IP network using different protocols, such as UDP and TCP.
It is possible to modify various parameters in terms of packet size, buffers, delay, protocols,
and many more [3]. A performance test works as follows: the iperf client is started on both
sides, server and client. While the server listens to a specified port for incoming packets,
the client addresses the receiver (server) by its IP address. Then, a data stream is sent to
the receiver side for one second and values like the throughput and PER are recorded. In
order to gain stable performance results, this sequence is repeated ten times within one test
cycle. The MTU defines the maximum frame length of an IP network related transmission.
Therefore, depending on the packet length, the data to be transmitted is fragmented into
frames which fit the MTU best. As the desired packet size is smaller than 1,500 Byte, one
transmitted frame consists of several packets. Through resizing data, a block ACK frame
is utilized to confirm all valid packets within one reply.

As state-of-the-art modules have plenty of different WLAN standards on board, it is of
great interest to have full control over utilized transmission parameters, such as modulation
index and transmit power. Indeed, it is possible to control these settings by implementing
a specific kernel version from Candela Technologies on the respective Linux PC systems
[4]. For details about the installation and applications of the whole test setup, refer to the

WLAN setup instruction guide.

Concerning the interference source, the captured baseband data from the measurement
campaign is utilized to perturb the communication with a vector signal generator (VSG)
during a performance test. Hence, the output of the reference source is a digitally modu-
lated signal, repeating real ISM band traffic. The VSG is started independent of perfor-
mance measurements and repeats the actual recording endlessly to eliminate timing-related
issues. The measurement results of this configuration serve as reference for further verifi-
cation of different interference sources, discussed in Section [3|and Section [4]

3 Injecting WLAN Frames with Linux

Remembering the results of the measurement campaign, the total amount of classified
WLAN frames is more than 90 % for both channels. Consequently, it seems to be natural
utilizing another Linux PC system with an implemented WLAN module to emulate ISM
band traffic. The main requirements on the desired source are an arbitrary transmit power
level and a sufficient timing resolution to fulfill minimum off-times of 1 ps. In the following,
two techniques realizing an interference source injecting WLAN frames will be discussed.

The first technique is based on sockets, enabling IP-based communications by utilizing,
for instance, user datagram protocol (UDP) or transmission control protocol (TCP). In
order to make use of such higher layer protocols, an association between the two respective
nodes, server and interference source, must be established. An association between two
WLAN nodes can be understood as connecting a WLAN device to an available access point
(server) for entering internet platforms. Examining this working principle of sockets yields
a violation of the scenario explained in Section [2 The coupler from Figure [I] provides the
same transmission characteristics towards interferer as vice versa. Hence, the interference
source will receive some traffic established between server and client during a performance
test. Because of collision avoidance schemes, the interferer will stop injecting frames when
surrounding traffic is detected. In conclusion, it turned out that the investigated sockets
are not sufficient as interference source.

A further approach for interference injection is a Python based program called Scapy. It
is capable of forming specific WLAN frames and transmitting them independently of any
MAC- and PHY-layer constraints. Another important key parameter of Scapy is the un-
restricted access to MAC-header properties. It is possible to form all kind of sequences,
such as management-, control-, and data frames [5]. Since the desired interference source
is blind to any surrounding traffic, it is necessary to omit specified transmission rules for
medium access. In order to meet these requirements, the operating mode of the respective
WLAN module must be changed. The monitor mode offers the opportunity to demodulate

all received WLAN packets passively and store their transmission properties. As its name
implies, this mode is designed for demodulation only and no rules regarding a valid data
exchange have to be fulfilled. Unfortunately, PHY properties cannot be changed. The uti-
lized modulations stick to legacy rates which are 1 Mbit/s (DSSS) regarding the 2.4 GHz
band and 6 Mbit/s (OFDM) for 5 GHz-related channels.

With Scapy, a promising interference source has been found, replacing expensive RF equip-
ment, like a VSG. Nonetheless, several issues have been identified. It is not possible to
change transmission parameters like modulation and data rate. Although the monitor
mode makes use of OFDM in the 5 GHz band, another issue makes this source imprac-
tical. As already mentioned, Scapy is a Python based program, which is an interpreted,
high-level programming language. Unlike procedural languages such as C, Python induces
latency effects when it comes to time-critical applications. Linux operating systems offer
priority levels for executed scripts, but the occurred timing variations are still too large for
the highest priority level. Sockets were also examined regarding timing properties. Since
the respective scripts are written in C and the required timing resolution could also not be
reached, it is obvious that the problem is caused by the operating system. Furthermore,
the actual available firmware and driver of the utilized WLAN module do not support a
dynamic regulation of the output power. Thanks to the kernel and adapted firmware from
Candela Technologies, it is possible to set the power level, but just initially for one single
time. However, the dynamic range, which could be achieved (20dB) is not sufficient to
emulate the required power level distribution ~ 60 dB. Because of the mentioned aspects,
a different approach for realizing a low-cost interference source must be found.

4 Modulated Noise

OFDM signals have a similar amplitude distribution compared to white Gaussian noise.
In order to prove this statement, an OFDM modulated WLAN frame, captured by the
measurement campaign in channel 36, is investigated. Figure [4] depicts the corresponding
densities of real- and imaginary parts of the sampled amplitudes. The mean and variance of
the observed amplitudes have been calculated to fit a normal distribution to the data. The
evaluated distributions are shown in a quantile-quantile (Q-Q) plot to compare the OFDM
amplitudes to a Gaussian density function. The Q-Q plots appear to be linear, which
means that the observed samples fit a Gaussian distribution function well. In addition,
they are uncorrelated and zero-mean. The imaginary- and real parts can be assumed jointly
Gaussian and, therefore, independently distributed.

0
006 004 002 0 002 004 006 008 008 -006 004 002 0 002 004 006
Amplitudes (V) Amplitudes (V)

(a) Histogram: real part (b) Histogram: imaginary part

+
e

Samples

-0.02 002

004 004

002 0 002 004 O 004 002 0 002
Normal distribution Normal distribution

(c) Q-Q plot: real part (d) Q-Q plot: imaginary part

Figure 4: Amplitudes of a recorded OFDM WLAN frame: histograms and corresponding
Q-Q plots of real and imaginary part

Hence, it is possible to create an interference source by utilizing white Gaussian noise.
Instead of injecting WLAN frames with a Linux PC system, noise will be modulated in
terms of mean power and burst length, according to the defined random variables from the
measurement campaign. As the 2.4 GHz ISM band is also utilized by other communication
standards, e.g., IEEE 802.11b (DSSS) and BLE, it will be examined in the following if
noise can be used as an interference source, yielding the same performance test results as
ISM band signals.

4.1 Simulation Model

In the following, a simulation model based on the IEEE 802.11a standard, in presence of
different kind of interference signals, will be investigated. OFDM splits a symbol sequence
into K = 64 orthogonal parallel data streams and passes them through an inverse fast
Fourier transform (IFFT). Figure [5| depicts the subcarrier mapping of the considered
communication standard. Binary data is mapped onto a symbol constellation (BPSK,
QAM, etc.) and converted into OFDM symbols consisting of 64 subcarriers. The subcarrier
mapping shows that an amount of 48 bins is reserved for payload data (deep blue), four
are pilots (green), and the remaining 11 subcarriers (cyan) are utilized for oversampling
as guard band. Furthermore, the DC carrier in the middle (grey) is not used for data

transmission. The OFDM symbols are then passed through the IFFT and at last a cyclic
prefix (CP) of 0.8 ps is added.

Null
u I ’
i

20

OFDM Subcarrier Mapping

Pilot ST T T P P P P T L P T LT P L P LT P L

1441

Guard Band 40 U T T P P T A L LT L L L P L

.
o—>—
50
o—>—
DU D T
Data o—>—
o—>—

o
20 40 60 80

100 120

Subcarrier Indices

OFDM Symbols

Figure 5: Subcarrier mapping according to IEEE 802.11a

Due to the repeated structure of the preamble, it is possible to detect packets and proceed
with further operations, such as channel estimation and frequency offset correction. The
short preamble consists of ten repeated sequences with a total length of 8ps. Utilizing
the metric invented by Schmidl and Cox [2], coarse frequency offset estimation and packet
detection can be realized. Equation [l| defines the required timing metric M (d) for packet
detection, the frequency offset relevant function P(d), and the signal energy R(d). Due
to implementing a sliding autocorrelation window with a size of L samples, the described
metric is independent of absolute received amplitudes of r. As one short training sequence
is 0.8 us long and assuming a sample rate of f; = 20 MSa/s, the correlation window consists
of L = 16 samples.

P = S (hraones). RO = X sl 0= T)

Through function P(d), it is possible to calculate a coarse frequency offset estimate. Ac-
cording to Equation |2} a shift in frequency domain (J;) relates to a multiplication with an
exponential function in time domain.

j27r5kn
e N "x, O—@ Xk—ék (2)

Furthermore, the autocorrelation function yields an output equal to one within the short
27dy,

training field. Assuming a signal model of r; = x;¢/ ¥ *, the argument of function P(d)
can be calculated (N = Ng = 64):

L-1

_ 27T§k . 274y,
P(d) _ Z xd-{- e I (d+m)xd metL ej = (d4+m+L)
m=0
L-1 %].271'5,C
= Z LgymTdtm+LE N
m=0 (3)
L—-1 ons
JREL
= Y %
m=0
N
Op ——arg (P(d)).
= o arg (P(d))
12 T T T T T 200
1150
l -
1 100
0.8 T
= 50 <
L2 5]
° L
1=)
= 0.6 0 >
g %
[= 150 =
0.4 o
[
1-100
02 Frame start estimation 1.150
— —% True frame start
Frequency offset estimation
0 I I I RAA L VUV A4 SV V. -200
0 2 4 6 8 10 12

t (us)

Figure 6: Coarse packet detection and frequency offset estimation: SNR = 20dB, fogset =
50kHz, togeet = 1.2 ps

Figure |§| depicts the respective output of timing metric M (d) and frequency offset fofer =
Op e for the following example: The investigated frame starts after 1.2 s and has a fre-
quency offset of 50 kHz. Furthermore, AWGN has been added with an SNR of 20dB.

As the correlation window is just 16 samples long, the frequency offset estimation suffers
from inaccuracies. Hence, the mean value is taken into account over a stable time interval.
In order to find the beginning of this time interval, the timing metric M (d) is utilized. The

10

coarse detection settings have been set as follows: If more than 16 samples in a row are
detected beyond a defined threshold of M > 0.5, the beginning of a frame is determined.
Since more than two short preamble sequences get lost with this technique (autocorrelation
window has a delay of L samples), a stable time of 6.4 1s remains. In order to get useful
results also for low-SNR scenarios, a stable time of 2.4 s is defined. The next step is a
fine timing synchronization. Utilizing an matched filter (MF) detection concerning the
long training field, correlation peaks appear after the convolution. If two maxima are
separated by 3.2 s, the beginning of the frame is defined precisely. Subsequently, the long
training symbols are also used for channel estimation. After synchronizing the received
frame in time- and frequency domain, the CP is removed and the fast Fourier transform
(FFT) is applied for demodulation. After the FFT, the outcoming OFDM symbols are
in frequency domain. Therefore, channel estimation reduces to a simple division of the
respective subcarriers (k) with the known preamble. Equation [4] yields a mathematical
approach by simply dividing the received long training symbols 7, by the true reference
symbols xj ,. As two long training fields exist (n), the mean of two channel estimates is
taken into account (n = 1..2, k = 1..48).

))

- Thn Nk.n - 1, -
Hkn: k, :Hkn+ k, Hk = *(Hk71+Hk,2) (4)
Ik,n xk;n 2

The frequency offset estimation function of Figure [6] clearly depicts the problem of inac-
curacies, caused by the short autocorrelation window. Consequently, the pilots (Figure [5)),
corrected by initial channel estimation, are investigated for further frequency offset correc-
tion. The rotation of the received pilots py , around the true pilots py, is estimated with
equation . The mean value e, is then multiplied with the respective OFDM symbol (n)

.

1 Nt

en = — . 5

N, kz:% P, (5)

In the following, the explained techniques will be applied to create a WLAN simulation
model. Furthermore, three different communications standards (WLAN DSSS, OFDM,
and BLE) will be compared to noise bursts as interferer. Figure [7| depicts the actual in-
terference scenario in subfigure (a) and the respective BER curves (b)-(d) for different
constellation mappings. The sent WLAN frame consists of the legacy preamble and pay-
load data according to the MTU size of 1,500 Byte. In order to create realistic conditions,
an equally distributed random time delay and frequency offset is applied. Furthermore,
an interference signal of additive white Gaussian noise (AWGN) and a certain communi-
cation standard are added to the desired WLAN frame. The utilized interfering standard
has an SNR of 30dB, a quarter length of the transmitted WLAN frame, and changes the
position anew, for every transmission. Regarding BLE as interferer, an equally distributed
frequency hopping scheme, varying the center-frequency for every frame, is implemented.
It must be mentioned, that the interfering standards were taken from the captured ISM

11

band data to maintain effects like peak-to-average power ratio (PAPR) reduction.

Despite sweeping the SNR for BER curves like in an AWGN scenario, the signal to interfer-
ence plus noise ratio (SINR) is investigated. Hence, the mean power of the whole interferer-
and WLAN frame is divided to gain the respective SINR. Ensuring an appropriate packet
detection and initial channel estimation, the utilized interfering standard has an additional
time offset to avoid an overlap with the WLAN preamble. Consequently, only the payload
data suffers from perturbations caused by additionally induced interfering signals.

Envelope WLAN frame + interferer frame 101 ‘ ‘ QA‘M

-60

Power (dBm)

0 50 100 150 200
t(us)
Envelope interferer frame
T T

-60

E \
o \ \
: : : : L !
0 50 100 150 200 10 5 I s 2 P s
t (us) SINR (dB)
(a) Interference scenario: WLAN frame plus in- (b) BER curve: QAM
terference (top), AWGN plus interferer (BLE)
(bottom)
16-QAM 64-QAM

Noise | |
OFDM
DSss
BLE

100

10»2 L

BER
BER

10° ¢

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 40

SINR (dB) SINR (dB)
(c) BER curve: 16-QAM (d) BER curve: 64-QAM

Figure 7: (a) Current interference scenario: SINR of 0dB and BLE as interferer, (b)—(d)
BER curves over SINR for different modulations and interference sources (Noise, OFDM,
DSSS, and BLE)

12

Obviously, all BER curves (Figure @ show a similar behavior regarding the interference
source. Noise, WLAN DSSS, and OFDM result in BER curves which are close together. For
higher QAM orders, the respective curves get even closer. Only distortions caused by BLE
differ from noise completely. According to the observed simulation, it is possible to utilize
modulated noise instead of digital data, such as WLAN DSSS and OFDM. Unfortunately,
BLE cannot be described through this approach. Considering results from measurement
campaign, the amount of this interferer is small. Hence, modulated noise is a promising
technique for emulating ISM band traffic.

4.2 Implementation of a Low-Cost Interference Source

A low-cost interference source, modeling noise by a digitally-controlled output power level,
has been realized [6]. This was done by using off-the-shelf components, such as noise
diodes, power amplifiers, and digitally-controlled step attenuators (Figure .

Figure 8: Low-cost interference source

The main system requirements are a high dynamic range DR > 50 dB and the opportunity
to realize off-times down to t.;,, = 1ps. Furthermore, the power level must be large
enough to overcome the insertion loss of the coupler, depicted in Figure [I In order to
meet these requirements, an overall gain of ~ 100 dB, using one noise diode and two power
amplifiers, is achieved. Figure [J] depicts the block diagram of the realized source. State-
of-the-art noise sources utilize silicon avalanche diodes. Because of the avalanche effect,
noise diodes are capable of enhancing the noise floor up to 30dB for a wide frequency
range (1 GHz...18 GHz). To describe the gain of such diodes, the excess noise ratio (ENR)
is investigated. For instance, an ENR of 30dB establishes a noise power density of N, =
—174dBm/Hz + 30dB = —144 dBm/Hz at room temperature Ty = 290 K.

13

Noise Diode P-AMP ATT P-AMP ATT
ENR ~30dB G 35dB IL 1.3dB IL 0.8dB G 35dB IL 1.3dB

Ao {>—o (HJE:>-E:>—D— (E}

Figure 9: Low-cost interference source: block diagram [6]

In order to control the output power level, two digitally-controlled step attenuators, yielding
a dynamic range of 63.5dB, are implemented. A 14 bit broad parallel interface, controlled
by a microcontroller, enables an output power resolution of 0.25dB. A bandpass filter,
optimized for WLAN applications in the 2.4 GHz band, is implemented to ensure a linear
operation of the second power amplifier.

Arduino provides a simple structured integrated development environment (IDE) for proto-
typing applications. The observed noise source uses a serial interface to communicate over
USB. Hence, a data sequence, realized by the respective random variables can be streamed
to the microcontroller. Unfortunately, the memory depth is not high enough to generate
sequences of the same length as a VSG. Therefore, it will be examined if this issue yields
different performance results. In addition to this, the PSD of the noise source is optimized
for the 2.4 GHz band. For WLAN channel 1, a maximum output power level of —2.67 dBm
at a bandwidth of 20 MHz is achieved. Concerning the 5 GHz band, the output power is
not high enough to overcome the insertion loss induced by the coupler. Consequently, only
channel 1 at 2.412 GHz will be investigated.

14

References

1]

2]

Travis F. Collins, Robin Getz, Di Pu, Alexander M. Wyglinski. Software-Defined Radio
for Engineers. Artech House, 2018.

Timothy M. Schmidl, Donald C. Cox. Robust Frequency and Timing Synchronization
for OFDM. TEEE Trans. Commun., Vol 45, No. 12, December 1997. [9]

Jon Dugan, Seth Elliott, Bruce A. Mah, Jeff Poskanzer, Kaustubh Prabhu. iPerf -
The ultimate speed test tool for TCP, UDP and SCTP. https://iperf.fr/

Candela Technologies. https://www.candelatech.com/

Philippe Biondi. Scapy documentation. https://scapy.readthedocs.io/en/latest

/[

Christian Spindelberger BSc. Noise source with a digitally-stepped output power level,
2018. http://www.interreg-interop.eu/results/wlan_interference_analysi
s/low_cost_interference_emulator/|[13]

15

https://iperf.fr/
https://www.candelatech.com/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
http://www.interreg-interop.eu/results/wlan_interference_analysis/low_cost_interference_emulator/
http://www.interreg-interop.eu/results/wlan_interference_analysis/low_cost_interference_emulator/

	1 Introduction
	2 Test Setup
	2.1 Measurement Setup Considerations
	2.2 Performance Measurements

	3 Injecting WLAN Frames with Linux
	4 Modulated Noise
	4.1 Simulation Model
	4.2 Implementation of a Low-Cost Interference Source

	References

