
Workshop on Embedded Linux in Zynq

InterOP – ATCZ175

Interoperability of Heterogenous Radio Systems

SIX Research Centre

Brno University of Technology

5.3.2020

Embedded Linux Workshop

Chosen topics of Embedded Linux

Marek Novak Lukas Janik

March 6, 2020

Acrios systems s.r.o

1/136

Schedule

• 9:00 - 10:30 Lecture

• 10:30 - 10:50 Coffee break

• 10:50 - 12:15 Lecture

• 12:15 - 13:00 Lunch

• 13:00 - 14:30 Hands-on

• 14:30 - 14:45 Coffee break

• 14:45 - 16:15 Hands-on

• 16:15 - 17:00 - Q&A

2/136

Materials

https://cutt.ly/1teDK9V

3/136

Outline

Morning - Theoretical part

• Device Tree Essentials

• Kernel modules, device drivers

• GPIO In Linux

• Initrd

• Accessing physical memory

• IPC In Linux

• Package managers in embedded Linux

Afternoon - Practice

• Working with device tree

• First kernel module

• Customizing GPIO subsystem

• Character device driver development

4/136

Quote

Intelligence is the ability to avoid doing work, yet getting

the work done.

– Linus Torvalds

5/136

Device Tree Essentials

Device Tree

Device Tree is a separate data structure for describing

hardware.

6/136

Device Tree - Motivation #1

• On systems without device tree, hardware structure is “hard

coded” and compiled as a part of the Linux kernel (board files)

• Each board has its own board file that defines and creates

devices. It is a part of the kernel though.

• Re-compilation of kernel when hardware description changes.

Kernel won’t boot on another platform

• Bootloader loads single image (+initrd)

7/136

Device Tree - Motivation #2

• Device tree is compiled separately, the resulting binary is called

device tree blob or flattened device tree (FDT)

• One kernel can run on multiple platforms within same

architecture

• In Linux kernel tree at arch/<arch>/boot/dts

• Custom device tree implementation also in non-GPL OS

(e.g. GreenHills Integrity)

8/136

Boot with Device tree

• The device tree blob and kernel is loaded from file (SD, tftp,

. . .) into RAM

“‘sh fatload mmc 0 0x8800000 devtree.dtb fatload mmc 0

0x0800000 uImage

“‘ * Bootloader may modify the blob (memory fixups, chosen node)

* Extract the kernel from uImage and boot it:

sh bootm 0x0800000 - 0x8800000

• Kernel expands the blob to its internal representation called

Expanded Device Tree (EDT)

9/136

Device Tree - Structure and syntax

• Tree structure with named nodes

• C-like syntax (can be preprocessed by GCC)

• Each node can have an arbitrary number of named properties

• compatible property is a special property that links a node to

a kernel driver

• Nodes can be linked to each other by phandles

• Nodes can have labels that will be expanded to node’s phandle

or path when referenced

• OS-specific or vendor-specific properties, nodes and compatible

strings contain the os/vendor name as a prefix

• Formed by Open Firmware project, currently maintained by

devicetree.org community

10/136

Device Tree - Vendor prefix

linux,cma {

compatible = "shared-dma-pool";

linux,cma-default;

...

};

dma-channel@80400030 {

compatible = "xlnx,axi-dma-s2mm-channel";

dma-channels = <0x01>;

interrupts = <0x00 0x1d 0x04>;

xlnx,datawidth = <0x20>;

xlnx,device-id = <0x00>;

};

11/136

Device Tree - Property types

Type Example

empty value interrupt-controller;

u32 integer value = 0x11223344;

u64 integer value = <0x11223344 0x55667788>;

array reg = <0xC1000 0x1000 0xA7000 0x1000>;

string compatible = "prefix,the-string";

string list clk-names = "clk_per", "clk_phy";

phandle parent = <&another_node>;

12/136

Device Tree - Example #1

pcf8575: gpio@20 {

compatible = "nxp,pcf8575";

reg = <0x20>;

interrupt-parent = <&irqpin2>;

interrupts = <3 0>;

gpio-controller;

interrupt-controller;

};

13/136

Device Tree - Example #2

/ {

compatible = "accton,wr6202", "ralink,rt3052-soc";

chosen {

bootargs = "console=ttyS0,115200";

};

gpio-leds {

compatible = "gpio-leds";

wps {

gpios = <&gpio0 14 GPIO_ACTIVE_LOW>;

};

};

...

14/136

Device Tree - Build

• Device tree compiler - dtc

• Preprocessing (if required) done by any GCC-like preprocessor

• The blob can be converted back to its source form (debugging)

• device tree blob is platform independent

Create a device tree blob from dts
dtc -I dts -O dtb -o mx6ulp.dtb mx6ulp.dts

Create a device tree source from the blob
dtc -I dtb -O dts -o mx6ulp.dts mx6ulp.dtb

15/136

Device Tree in kernel module #1

// drivers/gpio/gpio-dwapb.c

static const struct of_device_id dwapb_of_match[] = {

{ .compatible = "snps,dw-apb-gpio",

.data = (void *)0},

{ .compatible = "apm,xgene-gpio-v2",

.data = (void *)GPIO_REG_OFFSET_V2},

{ /* Sentinel */ }

};

MODULE_DEVICE_TABLE(of, dwapb_of_match);

16/136

Device Tree in kernel module #2

// drivers/gpio/gpio-dwapb.c

static struct platform_driver dwapb_gpio_driver = {

.driver = {

.name = "gpio-dwapb",

.pm = &dwapb_gpio_pm_ops,

.of_match_table = of_match_ptr(dwapb_of_match),

.acpi_match_table = ACPI_PTR(dwapb_acpi_match),

},

.probe = dwapb_gpio_probe,

.remove = dwapb_gpio_remove,

};

module_platform_driver(dwapb_gpio_driver);

17/136

Device Tree - tips

• A long include chain is a common source of errors

• Inspect changes during the DT Lifecycle

• preprocessing

• build

• dtb → FDT

• FDT → EDT

• Convert dtb back to dts

• Add structure-checking functionality to probe() function of

your driver

18/136

Device Tree in /proc

• EDT structure exported to filesystem

• make sure that CONFIG_PROC_FS and CONFIG_OF is enabled

• Each curly brace in device tree is a folder in

/proc/device-tree

• accessible by dtc: dtc -I fs ...

19/136

Device Tree in /proc

20/136

Device Tree tools

dt_to_config
/scripts/dtc/dt_to_config

• Check device tree source against kernel configuration

• Find nodes that do not have drivers present or set for build

• dt_to_config <path_to_dts_or_dtb>

dtdiff
/scripts/dtc/dtxdiff

• Compare two versions of DeviceTree (any format)

• Use dtxdiff <dts file> <dtb file>

21/136

Runtime debugging

Documentation/dynamic-debug-howto.txt

• Enable debug for a specific file/line/function/module

• Enable kernel config CONFIG_DYNAMIC_DEBUG

• At boot-time - Add a query to kernel cmdline

dyndbg="func bus_add_driver +p" dyndbg="func

really_probe +p"

• At run-time - via debugfs

bash echo "func bus_add_driver +p" >

/sys/kernel/debug/dynamic_debug/control echo "func

really_probe +p" >

/sys/kernel/debug/dynamic_debug/control

22/136

Runtime debugging

$ dmesg

bus: 'usb': really_probe: probing driver usb with device 4-2

bus: 'usb': really_probe: bound device 4-2 to driver usb

bus: 'usb': add driver r8152

bus: 'usb': really_probe: probing driver r8152 with device

r8152: probe of 4-2:2.0 rejects match -19

usbcore: registered new interface driver r8152

bus: 'usb': really_probe: probing driver r8152 with device

bus: 'usb': add driver cdc_ether

usbcore: registered new interface driver cdc_ether

usb 4-2: reset SuperSpeed Gen 1 USB device number 7 using xhci_hcd

r8152 4-2:1.0 eth0: v1.10.10

bus: 'usb': really_probe: bound device 4-2:1.0 to driver r8152

r8152 4-2:1.0 enp0s20u2: renamed from eth0
23/136

Device Tree - library

• Device Tree for dummies

• Device Tree Reference

• devicetree.org

• Debugging devtree #1

• Debugging devtree #2

24/136

Kernel modules

What is a kernel module

Each piece of code that can be added to the kernel at

runtime is called a module.

25/136

What is a kernel module

• Object code that is not linked into complete executable

• Allows extending the kernel functionality without a need to

reboot the system - easy driver development.

• Same code can be built into the kernel (available from early

boot), or as a module.

• Modules are stored as separate files in a filesystem. It needs to

be mounted before modules can be loaded.

• Thanks to loadable modules, Linux kernel binary can be very

small yet universal and multi-platform.

26/136

Module vs applications

Applications

• Event-driven or procedural

• Linked against external libraries

• Running in non-privileged mode

• Error may not cause system crash

• May be reentrant

Modules

• Strictly event-driven

• Can use only functions exported from kernel.

• Running in privileged mode

• Error may cause system crash

• Must be reentrant

• Can export symbols to be used by other loadable module

27/136

Simple kernel module

28/136

Kernel module licensing

• Kernel provided under terms of GPL-2.0

• Licensing interface between userspace and kernel are syscalls

• Modules should be tagged by MODULE_LICENSE macro which

specifies whether the module shall be linked with other modules

• Userspace headers are exception since they have to be included

both to GPL kernel and (possibly) non-GPL user programs

/* SPDX-License-Identifier: GPL-2.0 WITH

Linux-syscall-note */

29/136

Userspace vs kernelspace

• Kernelspace - Linux kernel monolith and modules. Runs in

privileged mode.

• Userspace - Other applications, running in non-privileged

mode.

• Userspace applications perform privileged operations indirectly

via kernel (syscalls)1

• Stable interface (only new syscalls added)

• Part of std. C library

open, read, write, close, fsync, access, bind,

chown, chroot, ...

1To see all syscalls, run man syscalls

30/136

Kernel composition

Essential parts of Linux kernel

• Device drivers

• Filesystem drivers

• Networking drivers

• Process management

Device driver classes

• Character devices

• Block devices

• Network interfaces

31/136

Device model

• Device is an “object”. It provides some properties (platform

data) and resources (IRQs, registers).

• Driver is a set of methods. It defines how the kernel should

interact with the device.

• Bus is a common parent of devices and drivers. It implements

device operations, either itself or by binding devices to drivers

• All devices are connected to some bus

• Bus can be physical (USB, PCI, etc.) or virtual (platform)

• Devices can be connected to more than one bus (e.g. USB

controller)

32/136

Device model

33/136

Device discovery

Discoverable bus devices

• USB, PCI, FireWire, . . .

• Created during discovery process by the bus driver

Non-discoverable devices

• I2C, SPI, . . .

• Created from device tree or during machine init

34/136

Platform devices

• Platform device is a device that is inherently not discoverable -

e.g. Iˆ2C devices, SoC controllers, . . .

• Platform devices are bound to platform driver by matching

names

• Instantiated by code or from Device tree

• Should be registered early

35/136

Case study: imx31 Lite #1

// arch/arm/mach-imx/mach-mx31lite.c

static unsigned int mx31lite_pins[] = {

/* UART1 */

MX31_PIN_CTS1__CTS1,

MX31_PIN_RTS1__RTS1,

MX31_PIN_TXD1__TXD1,

MX31_PIN_RXD1__RXD1,

/* SPI 0 */

MX31_PIN_CSPI1_SCLK__SCLK,

MX31_PIN_CSPI1_MOSI__MOSI,

MX31_PIN_CSPI1_MISO__MISO,

MX31_PIN_CSPI1_SPI_RDY__SPI_RDY,

MX31_PIN_CSPI1_SS0__SS0,

MX31_PIN_CSPI1_SS1__SS1,

...

};

36/136

Case study: imx31 Lite #2

/* UART */

static const struct imxuart_platform_data

uart_pdata __initconst = {

.flags = IMXUART_HAVE_RTSCTS,

};

/* SPI */

static const struct spi_imx_master

spi0_pdata __initconst = {

.chipselect = spi0_internal_chipselect,

.num_chipselect = ARRAY_SIZE(spi0_internal_chipselect),

};

/* NAND */

static const struct mxc_nand_platform_data

mx31lite_nand_board_info __initconst = {

.width = 1,

.hw_ecc = 1,

};

37/136

Case study: imx31 Lite #3

static struct smsc911x_platform_config smsc911x_config = {

.irq_polarity = SMSC911X_IRQ_POLARITY_ACTIVE_LOW,

.irq_type = SMSC911X_IRQ_TYPE_PUSH_PULL,

.flags = SMSC911X_USE_16BIT,

};

static struct resource smsc911x_resources[] = {

{

.start = MX31_CS4_BASE_ADDR,

.end = MX31_CS4_BASE_ADDR + 0x100,

.flags = IORESOURCE_MEM,

}, {

/* irq number is run-time assigned */

.flags = IORESOURCE_IRQ,

},

};

38/136

Case study: imx31 Lite #4

static struct platform_device smsc911x_device = {

.name = "smsc911x",

.id = -1,

.num_resources = ARRAY_SIZE(smsc911x_resources),

.resource = smsc911x_resources,

.dev = {

.platform_data = &smsc911x_config,

},

};

static struct platform_device physmap_flash_device = {

.name = "physmap-flash",

.id = 0,

.dev = {

.platform_data = &nor_flash_data,

},

.resource = &nor_flash_resource,

.num_resources = 1,

};

39/136

Case study: imx31 Lite #5

// arch/arm/mach-imx/mach-mx31lite.c

static void __init mx31lite_init(void)

{

imx31_soc_init();

mxc_iomux_setup_multiple_pins(mx31lite_pins,

ARRAY_SIZE(mx31lite_pins), "mx31lite");

imx31_add_imx_uart0(&uart_pdata);

imx31_add_spi_imx0(&spi0_pdata);

/* NOR and NAND flash */

platform_device_register(&physmap_flash_device);

imx31_add_mxc_nand(&mx31lite_nand_board_info);

imx31_add_spi_imx1(&spi1_pdata);

regulator_register_fixed(0, dummy_supplies,

ARRAY_SIZE(dummy_supplies));

}

40/136

Case study: imx31 Lite #6

// drivers/net/ethernet/smsc/smsc911x.c

static int smsc911x_drv_probe(struct platform_device *pdev)

{

...

struct smsc911x_platform_config *config = dev_get_platdata(&pdev->dev);

res = platform_get_resource_byname(pdev, IORESOURCE_MEM,

"smsc911x-memory");

if (!res)

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

irq = platform_get_irq(pdev, 0);

...

41/136

Binding device to a driver

Binding a device to a driver is done automatically by the driver core

when:

• Driver is registered and the device already exists -

driver_attach()

• Device is created and the driver is already registered -

device_attach()

Manual unbinding

• rmmod’ing the platform driver module will unbind all its devices

• Using sysfs

42/136

Unbinding driver using sysfs

$ ls -l /sys/bus/usb/drivers/usb

total 0

lrwxrwxrwx 1 root root 0 Feb 2 09:23 1-1 ->

../../../../devices/pci0000:00/0000:00:1a.0/usb1/1-1

lrwxrwxrwx 1 root root 0 Feb 2 09:23 1-1.2 ->

../../../../devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2

lrwxrwxrwx 1 root root 0 Feb 2 09:23 1-1.6 ->

../../../../devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.6

--w------- 1 root root 4096 Feb 2 09:23 bind

--w------- 1 root root 4096 Feb 2 09:23 uevent

--w------- 1 root root 4096 Feb 2 09:23 unbind

$echo -n "1-1.6" > /sys/bus/usb/drivers/usb/unbind

43/136

Device files

• Each device may expose itself to userspace via special device

files, stored in /dev

• Each device file is bound to driver via major and minor

number

• Major number - unique number, determines device type

• Minor number - instances of same device between each other

or sub-type

• “b” vs “c” in first column of ls -l for block devices and

character devices, respectively.

Major and minor numbers at place where file size normally

appears

• For a full list of static device number allocation, see

Documentation/devices.txt

44/136

ls -l /dev

ls -l /dev

drwxr-xr-x 2 root root 0 Jan 25 06:45 pts

crw-rw-rw- 1 root root 1, 8 Jan 25 06:45 random

lrwxrwxrwx 1 root root 4 Jan 25 06:45 rtc -> rtc0

crw------- 1 root root 250, 0 Jan 25 06:45 rtc0

brw-rw---- 1 root disk 8, 0 Jan 25 06:45 sda

brw-rw---- 1 root disk 8, 1 Jan 25 06:50 sda1

crw-rw-rw- 1 root tty 5, 0 Jan 28 20:34 tty

crw--w---- 1 root tty 4, 0 Jan 25 06:45 tty0

crw--w---- 1 root tty 4, 1 Jan 28 19:47 tty1

crw--w---- 1 root tty 4, 10 Jan 25 06:45 tty10

45/136

devices.txt - C1

Memory devices

1 = /dev/mem Physical memory access

2 = /dev/kmem Kernel virtual memory access

3 = /dev/null Null device

4 = /dev/port I/O port access

5 = /dev/zero Null byte source

6 = /dev/core OBSOLETE - replaced by /proc/kcore

7 = /dev/full Returns ENOSPC on write

8 = /dev/random Nondeterministic random number gen.

9 = /dev/urandom Faster, less secure random number gen.

10 = /dev/aio Asynchronous I/O notification interface

11 = /dev/kmsg Writes to this come out as printk's, reads

export the buffered printk records.

12 = /dev/oldmem OBSOLETE - replaced by /proc/vmcore
46/136

The story of /dev

• At the beginning, device files were created statically ~ <2.4

• Lot of files, nodes also for devices that are not present

(thousands)

• Running out of device numbers

• Devfs ~ >2.4

• Dev files only for devices that are present

• Non-standard, not persistent device names

• udev ~ >2.5

• userspace utility

• dev files created upon request from kernel

• persistent dev file naming configurable by user

• Devtmpfs ~ 2.6 - now

• Early tmpfs populated with device nodes

• No userspace required to have working /dev -> Faster boot

• udev can run on top of it as soon as userspace starts, utilizing
47/136

Character devices

• Most common type of device

• Device acts as a “Stream of characters”

• Examples: serial port, I2C, SPI, /dev/random, ...

• Must instantiate a cdev structure

• Must implement file_operations

48/136

struct file_operations

struct file_operations {

struct module *owner;

loff_t (*llseek) (struct file *, loff_t, int);

ssize_t (*read) (struct file *, char __user *,...

ssize_t (*write) (struct file *, const char __user *,...

ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);

ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);

int (*iterate) (struct file *, struct dir_context *);

unsigned int (*poll) (struct file *, ...

int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode *, struct file *);

int (*flush) (struct file *, fl_owner_t id);

int (*release) (struct inode *, struct file *);

int (*fsync) (struct file *, loff_t, loff_t, ...

int (*fasync) (int, struct file *, int);

int (*lock) (struct file *, int, struct file_lock *);

...

};

49/136

Block devices

• Device accessed by blocks

• Most often storage devices

• Examples: mmc, hard disks...

• Must instantiate a gendisk structure

• Must implement block_device_operations

50/136

struct block_device_operations

struct block_device_operations {

int (*open) (struct block_device *, fmode_t);

void (*release) (struct gendisk *, fmode_t);

int (*rw_page)(struct block_device *, sector_t, ...

int (*ioctl) (struct block_device *, fmode_t, ...

int (*compat_ioctl) (struct block_device *, ...

long (*direct_access)(struct block_device *, ...

long);

unsigned int (*check_events) (struct gendisk *disk,

unsigned int clearing);

int (*media_changed) (struct gendisk *);

void (*unlock_native_capacity) (struct gendisk *);

int (*revalidate_disk) (struct gendisk *);

int (*getgeo)(struct block_device *, struct hd_geometry *);

void (*swap_slot_free_notify) ...

};

51/136

ioctl()

• Functions defined in file_operations are not sufficient for

all purposes

• ioctl() allows to pass custom data from userspace to kernel

• Used e.g. in serial driver to set line parameters (baud rate, etc.)

• Command (cmd parameter) should be unique, vid.

Documentation/ioctl-number.txt

Kernel:

int (*ioctl) (struct inode *inode, struct file *fl,

unsigned int cmd, unsigned long data);

Userspace:

int ioctl(int fd, int cmd, ...);

52/136

Procfs, sysfs

procfs - /proc

• pseudo FS that provides information about kernel processes

and system information.

• Older one

• Does not have a strictly defined structure

• Allows all functions from file_operations

sysfs - /sys

• Another pseudo FS

• Since 2.6.

• Structured, uniform way to expose system information

• Current way of exposing driver information and/or setting

points

• Restricted file operations

53/136

procfs examples

• /proc/modules - list of loaded modules (lsmod)

• /proc/uptime - system uptime (uptime)

• /proc/version - kernel version (uname)

• /proc/cpuinfo - CPU information

• /proc/meminfo - memory information

• /proc/config.gz - kernel .config used to build running kernel

• /proc/<num> - information about process with PID <num>

54/136

sysfs examples

• /sys/dev - system devices (character/block)

• /sys/bus - system buses

• /sys/class - system device classes registered to kernel

• /sys/module - system modules (also builtin)

• /sys/firmware - system firmware objects

• sysctl - utility to manipulate /sys files

55/136

Kernel build system - Kbuild

Four essential building blocks:

1. config symbols - for conditional build of the code or to

decide y/m/n

2. Kconfig files - define meta information of config

symbols and available options, used by UI tools (menuconfig,

xconfig, gconfig)

3. .config file - a database of selected config symbols

4. makefiles - a common GNU makefiles defining the build

process itself

56/136

Example - linux-xlnx/net/Kconfig

menu "Character devices"

source "drivers/tty/Kconfig"

config DEVMEM

bool "/dev/mem virtual device support"

default y

help

Say Y here if you want to support the /dev/mem device.

The /dev/mem device is used to access areas of physical

memory.

When in doubt, say "Y".

config DEVKMEM

bool "/dev/kmem virtual device support"
57/136

Makefile - linux-xlnx/net/Makefile

#

Makefile for the kernel character device drivers.

#

obj-y += mem.o random.o

obj-$(CONFIG_TTY_PRINTK) += ttyprintk.o

obj-y += misc.o

obj-$(CONFIG_ATARI_DSP56K) += dsp56k.o

obj-$(CONFIG_VIRTIO_CONSOLE) += virtio_console.o

obj-$(CONFIG_RAW_DRIVER) += raw.o

obj-$(CONFIG_SGI_SNSC) += snsc.o snsc_event.o

obj-$(CONFIG_MSPEC) += mspec.o

obj-$(CONFIG_MMTIMER) += mmtimer.o

obj-$(CONFIG_UV_MMTIMER) += uv_mmtimer.o

obj-$(CONFIG_IBM_BSR) += bsr.o

58/136

Menuconfig

Menuconfig - Device drivers/Character devices
59/136

xconfig

bootlin.com

60/136

Building the kernel

• One needs to select the target architecture via env. variable

ARCH. It will be used for configuration and build.

• When left unset, kernel will be built for host’s architecture

• To see all possible architectures, check boot/arch folder

• When cross-compiling, set the CROSS_COMPILE variable with

the prefix of the toolchain

• It is advised to export these variables to the shell. Otherwise

you would need to set them for each command separately

• When compiling for host machine, leave both variables unset

export ARCH=arm

export CROSS_COMPILE=arm-none-eabihf-

61/136

Building the kernel - select configuration

Use pre-defined configuration for your setup

• Default configs for most scenarios

• Check arch/<YourArch>/configs for configurations

available for your architecture

• Load selected configuration sh make

xilinx_zynq_defconfig

Create custom configuration

• Use one of available tools sh make menuconfig # or

make xconfig # or make gconfig

62/136

Building the kernel - build

• Use the -j<corenum> parameter to run on multiple threads to

speedup the process

• Run the kernel build sh make -j4

• The build will produce:

• vmlinux - the uncompressed ELF kernel image

• arch/<YourArch>/boot/?Image - the compressed kernel

image that can boot (bzImage, zImage)

• arch/<YourArch>/boot/dts/*.dtb - the device tree binaries

63/136

Building the kernel - installation

• run make install to install the kernel to host system

• usually not used in embedded development

• requires root privileges

• copies the kernel image, used configuration and System.map

• run make modules_install to install built modules to

/lib/modules

• set INSTALL_MOD_PATH variable to specify path where modules

will be copied

64/136

Building modules out-of-tree

• You can build kernel modules at any location

• The only requirement is the presence of kernel headers

• Desktop OS Distributions often provide a package sh apt

install linux-headers-$(uname -r)

• Minimal makefile to compile kernel module first_module.c:

“‘makefile obj-m += first_module.o

KERNEL_TREE=/lib/modules/$(shell uname -r)/build

all: make -C (KERNELT REE)M =(PWD) modules “‘

65/136

Manual loading and unloading of a module

• insmod - Loads a module from a file. Does not resolve

dependencies

insmod first_module.ko [args]

• modprobe - Loads a module from

/lib/modules/<x.y.z-arch>. Loads dependencies first.

modprobe spi-gpio

• rmmod or modprobe -r - Unloads a module from kernel.

rmmod first_module

66/136

Module parameters

linux/moduleparam.h

• Module can take arbitrary number of named parameters

• Each parameter has assigned permissions

• S_IRUSR, S_IRUGO, . . .

• Many supported types: byte, short, ushort, int, uint,

long, ulong, charp, bool, invbool

• Use modinfo utility to show available module parameters

• Check /usr/modules/<module>/parameters to see all

parameters, and get/set their value

static int loops = 0;

module_param(loops, int, S_IRUGO);

MODULE_PARM_DESC(loops, "A number of loops");

static char *text = NULL;

module_param(text, charp, S_IRUGO);

MODULE_PARM_DESC(text, "This is a char pointer (string)"); 67/136

Automatic loading of a module

• When a device is inserted - udev

• Kernel sends uevent to udev, udev runs appropriate actions

(modprobe, create /dev node)

• “udev rules” in /etc/udev/rules.d (allow access to device to

normal users)

• udevadm monitor

• During boot by specifying in /etc/modprobe.conf

68/136

How to find out that there is a missing driver

• No special mechanism

• Check dmesg

• If applicable, check lsusb or lspci

• Find out whether required module is loaded

lsmod

• Check if the module is built into kernel

cat /lib/modules/$(uname -r)/modules.builtin

69/136

Library i

Linux source - Elixir

Kernel device drivers

Linux build system

Platform device API

A fresh look at the kernel’s device model

70/136

GPIO in Linux

GPIO Kernel API

• Legacy integer-based API [gpio]

linux/gpio.h

• Current descriptor-based API [gpiod]

linux/gpio/consumer.h

• GPIO should be obtained (reserved) before used

• GPIO can be exported to userspace

71/136

Kernel example

// From Documentation/gpio/board.txt

foo_device {

compatible = "acme,foo";

...

led-gpios = <&gpio 15 GPIO_ACTIVE_HIGH>, /* red */

<&gpio 16 GPIO_ACTIVE_HIGH>, /* green */

<&gpio 17 GPIO_ACTIVE_HIGH>; /* blue */

power-gpios = <&gpio 1 GPIO_ACTIVE_LOW>;

};

72/136

Kernel example

// From Documentation/gpio/board.txt

struct gpio_desc *red, *green, *blue, *power;

red = gpiod_get_index(dev, "led", 0, GPIOD_OUT_HIGH);

green = gpiod_get_index(dev, "led", 1, GPIOD_OUT_HIGH);

blue = gpiod_get_index(dev, "led", 2, GPIOD_OUT_HIGH);

power = gpiod_get(dev, "power", GPIOD_OUT_HIGH);

73/136

Access functions

int gpiod_direction_input(struct gpio_desc *desc)

int gpiod_direction_output(struct gpio_desc *desc, int value)

• Two variants of set/get functions:

• Functions that are spinlock-safe (controller is memory mapped)

• Functions that can sleep (controller connected via external bus

- I2C, etc.)

int gpiod_get_value(const sruct gpio_desc *desc);

void gpiod_set_value(struct gpio_desc *desc, int value);

int gpiod_get_value_cansleep(const struct gpio_desc *desc);

void gpiod_set_value_cansleep(struct gpio_desc *desc, int value);

74/136

Userspace - Sysfs API

• Legacy userspace API in /sys/class/gpio

• Currently deprecated

• Remains exported when application crashes

• Multiple file descriptors, multiple syscalls

Export GPIO pin 15

echo 15 > /sys/class/gpio/export

Set as output

echo out > /sys/class/gpio/gpio15/direction

Set GPIO 15 to "1"

echo 1 > /sys/class/gpio/gpio15/value

75/136

Userspace - Character device API

• Merged in 4.8

• One device per gpiochip

• Access via /dev/gpiochip0 etc.

• Allows multiple operations at single syscall

• API defined in include/linux/gpio.h

• libgpiod - C library for handling new GPIO userspace API

• Userspace tools for GPIO handling provided

• https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git

76/136

libgpiod - example

struct gpiod_chip *chip;

struct gpiod_line *line;

// Open GPIO chip

chip = gpiod_chip_open("/dev/gpiochip0");

// Get line (pin) from the GPIO chip

line = gpiod_chip_get_line(chip, offset);

// Request (reserve) the line and set as output

gpiod_line_request_output(line, "consumer", 0);

// Set value to the line

gpiod_line_set_value(line, 0);

// Release the line

gpiod_line_release(line);

77/136

libgpiod - Tools

• gpiodetect - list all gpiochips present on the system, their

names, labels and number of GPIO lines

• gpioinfo - list all lines of specified gpiochips, their names,

consumers, direction, active state and additional flags

• gpioget - read values of specified GPIO lines

• gpioset - set values of specified GPIO lines, potentially keep

the lines exported and wait until timeout, user input or signal

• gpiofind - find the gpiochip name and line offset given the line

name

• gpiomon - wait for events on GPIO lines, specify which events

to watch, how many events to process before exiting or if the

events should be reported to the console

78/136

Library

GPIO in the kernel: an introduction

GPIO Sysfs Interface for Userspace

New GPIO interface for Userspace

Documentation/gpio/board.txt

79/136

Initrd

System boot

• Bootloader loads the kernel image (and devtree) to RAM

• Kernel is self-extracted and run

• Kernel mounts temporary root file system to /

• Modules required for mounting the final rootfs are loaded

• Actions required for mounting the final are performed (user is

asked for password to LUKS)

• The / is switched to new location and initrd is dropped

• Kernel starts init (sysv, systemd) with PID 1

• Init starts all system services

80/136

What is Initrd?

• Initial RAM Disk provided during boot

• Contents temporarily mounted to /

• Purpose: Load modules and utilities required to mount the

rootfs

• FS modules (LVM, btrfs, . . .)

• Encryption utilities (dm-crypt)

• network utilities for NFS (dhclient)

• After mounting the rootfs, whole set of modules is available.

The initrd’s memory is released.

81/136

Initrd vs Initramfs

Initrd

• The older one

• Regular ramdev block device

• Requires underlying filesystem → has to be compiled in kernel

(e.g. ext2)

• dentry, inode for each opened file has to be allocated also in

kernel → a bit higher memory consumption, complexity → a

bit slower than initramfs

Initramfs

• Since 2.5.x

• Uses tmpfs

• Does not need underlying filesystem

• tmpfs support is in kernel, no need for additional modules

• Often called just initrd
82/136

Generating initrd

• Usually each OS distribution provides own script

• Ubuntu: update-initramfs, mkinitramfs

• Archlinux: mkinitcpio

• mkinitcpio -c /etc/mkinitcpio-custom.conf -g

/boot/linux-custom.img

• Image itself is usally generated based on a config (receipt)

83/136

/etc/mkinitcpio.conf

MODULES=()

BINARIES=()

FILES=()

HOOKS

This is the most important setting in this file. The H..

modules and scripts added to the image, and what happen..

Order is important, and it is recommended that you do n..

order in which HOOKS are added. Run 'mkinitcpio -H <ho..

help on a given hook.

HOOKS=(base udev autodetect modconf block filesystems key..

COMPRESSION="gzip"

84/136

Accessing physical memory

Physical vs virtual memory

• Physical memory - defined by hardware, can be different for

each device on the memory bus

• Virtual memory - as seen from software / behind MMU

• Translation (mapping) done by memory management unit

(MMU)

• Smallest unit - Page, usually 4 kB

• Single page frame (physical) may be mapped multiple times

(to multiple virtual pages)

• The relation between physical and virtual addresses is stored in

a hierarchy of Page tables

85/136

Memory mapping

86/136

Motivation

• Each user process resides in its own address space

• One process can’t corrupt kernel memory

• One process can’t corrupt another process’s memory

• Each process has different virtual - physical mapping

• More processes can map same chunk of RAM (e.g. for RPC)

• User process’ memory is assigned by kernel and controlled by

MMU

• Kernel memory is permanently mapped (at PAGE_OFFSET)

• Performance

• Handling interrupts, exceptions, syscalls, . . .

87/136

Kernel virtual memory

• void *kmalloc(size_t size, gfp_t flags);

allocate normal kernel contiguous memory

• void *vmalloc(unsigned long size);

allocate non-contiguous memory (in separate addres space).

Usually for large allocations. Allocate entire pages.

• void __iomem *ioremap(resource_size_t res_cookie,

size_t size);

Map device memory to kernel

• void *kmap(struct page *page);

Permanently map arbitrary physical page to kernel. Use

kunmap() as soon as not required.

88/136

ioremap() caching on ARM

// arch/arm/include/asm/io.h

/*

* Function Memory type Cacheability Cache hint

* ioremap() Device n/a n/a

* ioremap_nocache() Device n/a n/a

* ioremap_cache() Normal Writeback Read allocate

* ioremap_wc() Normal Non-cacheable n/a

* ioremap_wt() Normal Non-cacheable n/a

*

* All device mappings have the following properties:

* - no access speculation

* - no repetition (eg, on return from an exception)

* - number, order and size of accesses are maintained

* - unaligned accesses are "unpredictable"

* - writes may be delayed before they hit the endpoint device

*/

89/136

/dev/mem

• Driver in drivers/char/mem.c

• Character device for interfacing userspace applications with

physical memory

• Available operations:

• read() - read from physical memory

• write() - write to physical memory

• mmap() - map physical range to userspace

• Some limitations may apply (CONFIG_STRICT_DEVMEM)

90/136

Memory-mapped IO

// drivers/gpio/gpio-zynq.c

/* Fetch the memory resource from the device */

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

/* Map registers to kernel */

gpio->base_addr = devm_ioremap_resource(&pdev->dev, res);

if (IS_ERR(gpio->base_addr))

return PTR_ERR(gpio->base_addr);

// ...

/* set the GPIO pin as output */

reg = readl_relaxed(gpio->base_addr + ZYNQ_GPIO_DIRM_OFFSET(bank_num));

reg |= BIT(bank_pin_num);

writel_relaxed(reg, gpio->base_addr + ZYNQ_GPIO_DIRM_OFFSET(bank_num));

91/136

Memory caching on ARM

92/136

Process virtual memory

• Show memory mapping of process with PID <pid>

/proc/<pid>/maps

93/136

Library

Memory management in Linux

kvmalloc()

KAISER: hiding the kernel from user space

94/136

Quote

The memory management on the PowerPC can be used to

frighten small children.

– Linus Torvalds

95/136

Inter-Process-Communication (IPC)

In Linux

IPC - Overview

• Allows to create more complex systems

• Multiple processes handling a portion of the system

communicating with each other

• List of available mechanisms: Signals, Anonymous Pipes,

Named Pipes or FIFOs, SysV Message Queues, POSIX

Message Queues, SysV Shared memory, POSIX Shared memory,

SysV semaphores, POSIX semaphores, FUTEX locks,

File-backed and anonymous shared memory using mmap,

UNIX Domain Sockets, Netlink Sockets, Network Sockets,

Inotify mechanisms, FUSE subsystem, D-Bus subsystem, micro

bus (OpenWRT)

• Availability depends on actual distribution

• Link: Linux IPC Mechanisms

96/136

IPC - Signals

• One way asynchronous notifications

• Sent by kernel or a process to another process

• Typically alerts on an event - CTRL+C pressing, Stack fault,

User defined signal. . .

• Signals can be: raised, caught, acted upon, ignored

• Handles signals cause execution of a signal handler function

• Acts like an interrupt - once execution ends, main context

continues

• Link: Linux Process and Signals

97/136

IPC - Signals : Example

#include <stdio.h>

#include <unistd.h>

#include <signal.h>

void my_signal_interrupt(int sig)

{

printf("I got signal %d\n", sig);

(void) signal(SIGINT, SIG_DFL);

}

int main()

{

(void) signal(SIGINT,my_signal_interrupt);

while(1) {

printf("Waiting for interruption...\n");

sleep(1);

}

}

98/136

IPC - Named Pipes

• Acts as a FIFO

• Created by mkfifo test, where ‘test’ is the name of the pipe

• One process can write to the file

• Other process opens the file and reads data until EOF is

reached

99/136

IPC - Named Pipes: Writer

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

void main(void)

{

int f;

printf("Wait until a process opens FIFO for reading...\n");

f = open("test", O_WRONLY); //open FIFO called "test"

printf("Write the message...\n");

write(f,"hello",5); //write 5 bytes to FIFO

close(f);

printf("Message Delivered!\n");

return;

}

100/136

IPC - Named Pipes: Reader

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

void main(void)

{

char buffer[32]; //some buffer

int count;

int f;

printf("Wait for a process to open FIFO for writing...\n");

f = open("test", O_RDONLY); //open FIFO called "test"

printf("Read the message...\n");

count = read(f, buffer, 32); //read up to 32 bytes

close(f);

buffer[count] = '\0';

printf("Received: '%s'\n", buffer);

return;

}

101/136

IPC - Shared Memory

• Allows for multiple writers and multiple readers

• Explained on a practical example - logger process

• Link: Interprocess Communication Using Posix Shared Memory

In Linux

• Link: Memory Mapped Files and Shared Memory

102/136

IPC - Shared Memory: Principle

• Multiple processes map the same physical memory to their

respective shared memories

• Care must be taken to respect caching

• Care must be taken to provide semaphores/mutexes to avoid

race conditions

• A fast replacement for read and write operations

• After the mapping, data are sent to the other process by

directly writing a variable

103/136

IPC - Shared Memory: Important C Functions

• Using shm_open() function a shared memory object is made

available

• Using shm_unlink(), the object can be “closed”

• Using ftruncate(), the initial size of the shared memory is set

• Using mmap(), the shared memory is mapped to the process

virtual memory

• Using munmap(), the mapping is removed

104/136

IPC - Shared Memory: Logger

105/136

IPC - Network Sockets

• Using TCP or UDP communication on 127.0.0.1 / localhost

• Very common - easily portable to networked scenario

• Slower than UNIX Domain Sockets, but cross platform

(Windows)

• Not file-backed - data written to a socket is lost on reboot

(unlike named pipes)

106/136

Package Managers in embedded

linux

Embedded or non-embedded?

• It is hard to make categorize

• Package managers used commonly today selected

• Principle is always the same:

• Setup installation feeds

• Install, remove, update, list

• Selected: APT, OPKG, SMART

107/136

Advanced Packaging Tool (APT)

• Popular in Debian, Ubuntu and related

• Configuration in /etc/apt

• Feeds in /etc/apt/sources.list and/or in

/etc/apt/sources.list.d/ folder

• A lot of packages available

108/136

APT - feeds/repositories

• Contain .deb files called packages

• URLs listed in format: “deb ” (e.g.: deb

http://deb.debian.org/debian buster)

• Possible to install from file: apt install ./mypackage.deb

• Every package:

• Contains pre/post install and pre/post remove scripts

• Names of dependencies/prerequisites

• Version, maintainer, etc.

109/136

APT - operations

• apt install : installation

• apt purge : uninstall and remove

• apt search : search for package

• apt list : list installed packages

• apt update : get updated list of available packages

• can be a wildcard

110/136

APT - example package inside

*

111/136

Open Package Management (OPKG)

• Used in OpenWRT, Buildroot and Yocto

• Simpler than APT, however less packages available

• Fork and successor of IPKG (dead/dying)

• Command line interface very similar to APT

• Uses .ipk packages

112/136

OPKG - feeds

root@Omega-1773:~# ls /etc/opkg

customfeeds.conf distfeeds.conf

root@Omega-1773:~# cat /etc/opkg/customfeeds.conf

add your custom package feeds here

#

src/gz someName http://www.example.com/path/

113/136

OPKG - package structure

packages/serialnumber/

|-- ipkbuild

| `-- example_package

| |-- control.tar.gz

| | |-- control - prerequisites, maintainer name,...

| | |-- postinst - run after installation

| | |-- preinst - run before installation

| | `-- prerm - run before removal

| |-- data.tar.gz - actual package files

| | |-- usr

| | | `-- bin

| | | `-- my_binary

| `-- debian-binary - version of the packaging used

`-- example_package_1.3.3.7_varam335x.ipk
114/136

SMART

• Modern, version 1.0 in 2008

• Merged in Yocto project

• Supports RPM, APT, Slackwate “channels”

• Has a command line GUI interface

• Future of packaging in Linux world?

• Link: https://labix.org/smart

115/136

Practical part

Outline

• Preparing the workspace - Docker

• First steps with Device tree

• Building first kernel module

• Setting default state of a GPIO pins - two approaches

• Writing character device driver

116/136

Docker

• Opensource project for application isolation and deployment

• Building blocks: images and containers

• Image - isolated environment (filesystem) in which an

application will run

• Container - a process running within an image under Docker

engine

117/136

Docker - Motivation

• Application isolation on many levels

• Filesystem separation (can be easily connected to host FS with

bind mounts)

• Process separation (own set of PIDs, . . .)

• Network isolation

• Applications run natively on host’s kernel

• No performance drop

• No memory overhead

• IBM Research on Docker vs VM performance link

• Fast deployment

• Images for most frequently used tools/services available on

Dockerhub

118/136

Docker - example

• Run a container with ubuntu image sh docker run -it

ubuntu /bin/bash

• -i . . . interactive

• -t . . . attach to stdin/stdout

• Access host filesystem from container sh docker run -it

-v /home/user/wd:/data ubuntu /bin/bash

• -v<host>:<guest> . . . bind mount <host> directory to

<guest> within the container

119/136

Preparing the workspace

1. Download the archive to your working directory

https://files.acrios.com/index.php/s/GAL98g32gdH7HQP

2. Extract the archive sh tar -xvzf

embedded-linux.tar.gz cd 01-embedded-linux

3. Run following command to see all available make targets sh

make help

4. Build the sandbox (may take few minutes to download all

stuff) run make sandbox. This step will download and install

all required tools to the docker container.

Next time you run ‘make sandbox‘, only changed files will be

re-downloaded. Use this command to enter the sandbox.

120/136

Building a kernel for RedPitaya

1. Make sure you are in docker container; working directory

/pitaya.

2. Run make kernel-download to only download the kernel

sources, or:

3. Run make kernel-build to download and build kernel

sources with xilinx_zynq_defconfig

121/136

Important kernel headers

/* Error checking/converting macros IS_ERR(), PTR_ERR etc. */

#include <linux/err.h>

/* Common kernel macros. KERN_INFO, ALIGN(), ARRAY_SIZE(), abs() */

#include <linux/kernel.h>

/* module_init, module_exit, meta information macros */

#include <linux/module.h>

/* __init and __exit macros */

#include <linux/init.h>

/* string operations */

#include <linux/string.h>

/* Legacy gpio() functions */

#include <linux/gpio.h>

/* gpiod() functions */

#include <linux/gpio/consumer.h>

122/136

Important kernel headers

/* Kernel device model */

#include <linux/device.h>

/* Kernel platform device model */

#include <linux/platform_device.h>

/* kmalloc() */

#include <linux/slab.h>

/* Working with device nodes and properties */

#include <linux/of.h>

/* Unified device property interface */

#include <linux/property.h>

/* Bit operations */

#include <linux/bitops.h>

/* struct file_operations, chardev */

#include <linux/fs.h>

/* Userspace access - copy from user, copy to user ... */

#include <linux/uaccess.h>

123/136

Example 1 - Device tree

src/01_device_tree

1. Inspect attached Makefile

2. Inspect and build the prepared dts

socfpga_stratix10_socdk.dts using the make

3. Check the whole build process, try to decompile

4. What are the differences between the original source and the

decompiled one? Why?

sh cd 01_device_tree make dtb make dts

124/136

Example 2 - First kernel module

src/02_first_module

1. Check the source code

2. Build the module using prepared Makefile

3. Load the module to kernel

1. Built natively –> load in your host OS

2. Built in sandbox –> transfer to RedPitaya and load there

4. Load and unload the module, check results in dmesg

125/136

Example 2 - Kernel module build

cd 02_first_module

make

cd <working directory>

insmod first_module.ko

dmesg | tail

Check output

rmmod first_module

dmesg | tail

Check output

126/136

Example 3 - Kernel module parameters

03_parameters

1. Check the source code

2. Build the module using prepared Makefile

3. Load the module to kernel

1. Built natively –> load in your host OS

2. Built in sandbox –> transfer to RedPitaya and load there

4. Check how passing module parameters works

5. Add description to each parameter. Check by modinfo tool.

127/136

Example 3 - Kernel module parameters

cd 03_parameters

make

cd <working directory>

insmod module_parameters.ko

dmesg | tail

Check output

rmmod module_parameters

insmod module_parameters.ko <param1=x> <param2=y>

dmesg | tail

Check output

rmmod module_parameters
128/136

Example 4 - GPIO on RedPitaya

Update the existing GPIO controller driver so it supports

“default-on” property.

1. Inspect the device tree used on the running board

2. Check the module hierarchy to handle onboard LEDs

3. Add a default-on property to GPIO controller node. The

property is an array of pin numbers that will become “ON”

after driver startup. Use pins of user LED 3 and 4.

4. Update the driver of used GPIO controller so that it loads the

array of pins from the DeviceTree and sets them to log. “1”

5. Rebuild the kernel and replace the default kernel on RedPitaya

6. Boot the board with new kernel

129/136

Example 4 - Inspecting the onboard devtree

• The device tree blob is stored in /boot/devicetree.dtb on

the target

• Copy the blob to src/04_gpio_zynq folder

• Convert the blob to source and inspect in text editor sh dtc

-I dtb -O dts <source> -o <output>

• Find out the compatible string of GPIO controller

• Find the GPIO controller driver within the Linux kernel tree sh

cd src/linux-xlnx grep -Hnr --color

"the_compatible_string" *

130/136

Example 4 - Making changes

• Add the default-on property to the GPIO controller node,

containing numbers of pins used for user LED3 and LED4

• Modify the probe function of the GPIO controller driver so it:

• loads an array of integers from default-on property

• sets appropriate pin directions to “OUT”

• sets appropriate pin states to “1”

131/136

Example 4 - Build and load

• Build the device tree

• Rebuild the kernel with updated module

• Remount the /boot partition as RW

• Replace the uImage and devicetree.dtb

132/136

Example 5 - GPIO on RedPitaya, the right way

Create a custom driver for setting default GPIO states.

1. Create a new module for setting default states of chosen GPIO

pins. Get inspired by the leds-gpio.c

2. Use device tree source from last step, remove user leds 0 and 1

and use those pins for node “gpio-default”

3. Build and load the module and device tree binary to the

RedPitaya

4. Boot the board and check results

133/136

Example 5 - DevTree structure

gpio-default {

compatible = "gpio-defaults";

pin1 {

gpios = <&gpio0 58 0>;

default-state = "off";

};

pin2 {

gpios = <&gpio0 59 0>;

default-state = "off";

};

};

134/136

Example 6 - Character device driver

Create a new module implementing character device func-

tionality.

1. Create a new module implementing character device

functionality

2. Implement file operations so that:

• Each open() will be counted and printed to kernel debug buffer

• Writing to device will store a message into a buffer. Number of

bytes written will be printed to kernel debug buffer.

• Reading from device will print last stored message

3. Build and load the module to your OS or to RedPitaya.

4. Check functionality by writing/reading the /dev node and

dmesg

5. Inspect related /sys/class nodes

135/136

Questions?

Backup slides

Booting into read-only filesystem

• Devices that do not need to write any data to filesystem (FS)

often mount the filesystem as read-only

mount -t ext4 /dev/sda1 / -odefaults,ro

• Useful to prevent from undesired writes to flash memory

• Tmpfs (ramdisk) used as a volatile writable FS

• To prevent filesystem corruption when errors are detected

mount -t ext4 /dev/sda1 /

-odefaults,errors=remount-ro

• seamlessly remount as read-write

sudo mount -o remount,rw /

136/136

Links

	Device Tree Essentials
	Motivation
	Structure
	Properties and syntax
	Device Tree Build
	DevTree in kernel
	Tips
	Library

	Kernel modules
	Module vs application
	Kernel composition
	Platform devices
	Device binding
	Device files
	Character devices
	Block devices
	KBuild
	Building the kernel
	Loading modules
	Library

	GPIO in Linux
	Kernel API
	Sysfs API
	Character device API
	Library

	Initrd
	System boot
	Initrd vs Initramfs
	Generating initrd

	Accessing physical memory
	Kernel virtual memory
	Process virtual memory

	Inter-Process-Communication (IPC) In Linux
	Signals
	Named Pipes
	Shared Memory
	Network Sockets

	Package Managers in embedded linux
	APT
	OPKG
	SMART

	Practical part
	Docker
	Preparing the workspace
	Example 1 - Device Tree
	Example 2 - First module
	Example 3 - Module parameters
	Example 4 - GPIO On RedPitaya
	Example 5 - Custom GPIO driver
	Example 6 - Character device

	Questions?
	Backup slides
	Links

