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LinzFrame Simulator Overview
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Design requirements
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Design requirements

Mismatches · Crosstalk
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Design requirements

Design requirements · Mirror signals
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Design requirements

Simulation Perspective

Baseband (envelope) and RF signals occur simultaneously · sampling
theorem bottleneck

Nonlinearities of the devices to be taken into account

Lumped and distributed devices on the same die

Modeling of nonlinear RF devices from measurements (e.g. X-params)
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Design requirements

Simulation Challenges · Solutions

Sampling theorem bottleneck · Multi-rate methods

Nonlinearities of the devices · Multi-rate methods for nonlinear
di�erential equations

Lumped and distributed devices · Mixed-level circuit and
electromagnetic �eld simulation

Modeling of nonlinear RF devices from measurements · InterReg
project InterOP
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Multi-rate methods

State of the Art · Equivalent Complex

Baseband Method (ECB)
|XHF (f)|
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Uni�ed theoretical treatment of
baseband and bandpass communication
(i. e. GMSK, OFDM)

Simulation of bandpass systems
independent of the carrier frequency

Circumventing the bottleneck of
Shannon's sampling theorem

Method is restricted to LTI systems
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State of the Art · Equivalent Complex
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Multi-rate methods

Multi-rate signals · Goals

Avoiding the bottleneck of Shannon's sampling theorem by decoupling
the baseband (envelope) signal from the carrier signal

Generalizing the ECB method for nonlinear systems and nonlinear
di�erential equations from electronic circuits

Method shall be compatible with standard circuit simulators (i.e.
SPICE) employing the Modi�ed Nodal Analysis (MNA)

State of the art device models (BSIM, MEXTRAM etc.) including
Jacobians

Therefore perturbation methods such as Volterra series are out of
scope since they require higher order derivatives
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Multi-rate methods

Multi-rate signals · bottleneck

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

���

����
�

0
0.2

0.4
0.6

0.8
1

x 10
−6

0

1

2

3

4

x 10
−8

−1

−0.5

0

0.5

1

����
����

���������
�

Assumptions: fc � BNF ;
The sampling rate is a factor of 5−10 larger
than the Nyquist rate;
Simulation over interval of length T > 1

BNF

; Number of samples: K � 10 · fc
BNF

Separation of scales: Introducing a slow time
scale t1, a fast time scale t2 and a multirate
waveform x̂(t1, t2):
; K = 102 in the domain (t1, t2) at the
same accuracy independent of the
frequencies with periodic boundary conditions

H.G. Brachtendorf (FH-OÖ) c© 2019 12 / 30



Multi-rate methods

Intermodulation distortion · Spectra

Sparse one dimensional spectrum X (f )
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Multi-rate methods

Quartz crystal oscillators · Transients
C6
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Multi-rate methods

Nonlinear Multi-rate · The multi-rate

PDE

Circuit equations (MNA): d
dt q
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Multi-rate methods

The multi-rate PDE · Further
requirements

Periodicity: x̂(τ, t) = x̂(τ, t +P) ŝ(τ, t) = ŝ(τ, t +P)

e.g. P = 1, P = 2π or P = T2 (period of carrier)

Initial values x̂(0, t) = X0(t), X0(0) = x0

Additional unknown ω(τ)

For any ω1(τ) and ω2(τ) and corresponding solutions x̂1(τ, t) and
x̂2(τ, t) there is an S(τ) with

x̂1(τ, t) = x̂2
Ä
τ, t +S(τ)

ä
Choose ω(τ) to get optimal smoothness!
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Multi-rate methods

The multi-rate PDE · Characteristic
curve

� �

��

�

�

Solution of ordinary DAE along characteristic curveÄ
t, Ωθ (t)

ä
for a family of initial conditions;

speci�cally θ = 0 for the solution of the initial value problem X (0) = x0
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Multi-rate methods

2 MHz Pierce quartz crystal oscillator
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Multi-rate methods

Voltage Controlled Oscillators (VCO)
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Multi-rate methods

Folded Mixer
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Multi-rate methods

PLL s(t) = sin
(
2πf1t+

∆f
f2
sin(2πf2t)

)
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Figure 2: Adaptive grid for Gilbert mixer

Phasedetector Loopfilter

Control
signalFeedback

Reference

Freq.−divider VCO

Figure 3: Schematic of a PLL

is also sinusoidal with frequency 200Hz and frequency devi-
ation 200Hz. In Figure 6.2 one can see the control signal for
the VCO (the filtered output of the phase detector), which
controls the frequency of the oscillator. Note, that the en-
velope corresponds to the baseband signal, while the carrier
signal is due to the filtering almost constant.

Figure 6.2 shows the digital feedback signal. Note that
ω(τ ) was chosen to satisfy the condition 14. The plot of
ω(τ ) in Figure 6.2 fits almost perfectly the baseband signal.
In the light of Example 1, the graphs in Figures 6.2 and 6.2,
show indeed a frequency modulated box shaped signal. The
optimal choice of ω(τ ) results in high smoothness with re-
spect to τ . This allows to do the shown envelope simulation
using only 168 envelope time steps, while a corresponding
transient analysis would contain 3100 oscillations.
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Figure 4: PLL example. Control signal of the VCO
(multirate)

Figure 5: PLL example. Feedback signal (multirate)
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Mixed-signal circuit and electromagnetic �eld simulation

fp7 nanoCOPS · On-chip Inductor
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Mixed-signal circuit and electromagnetic �eld simulation

Simulation perspective

Distributed devices: 3D electromagnetic �eld simulation

Distributed and (approximately) lumped devices in the same circuit

Standard approach: characterization of distributed devices by
S-params in the frequency domain.

Either by measurements or 3D electromagnetic �eld simulation

New approach: Mixed-level circuit and �eld simulation employing
Magwel's �eld simulator devEM
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Mixed-signal circuit and electromagnetic �eld simulation

Coupled simulation: π phase shifter balun
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Mixed-signal circuit and electromagnetic �eld simulation

Balun with power stage
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Mixed-signal circuit and electromagnetic �eld simulation

The Coupled Simulator · Master-Slave

nonlinear solve

damped Newton

devEM

device geometries (xml)

Maxwell’s equations

· · ·
semiconductor equations

Jn = −q µn

(
n · ∇V − k T

q · ∇ n
)

Jp = −q µp

(
p · ∇V + k T

q · ∇ p
)

x = (V, A)T

−ǫ ∇ · (∇V + ∂t A) = ρ

holistically coupled problem

MNA - lumped models - netlist (C++)

LinzFrame

f (x) + ∂t q(x) + s(t) = 0

x = (v, i)T

devEM

spatial discretization (FIT)

coupled circuit - EM - device model

LinzFrame

time discretization

AC, DC, trans, multirate

linear solve

g(x, ∂t x, t) = 0

MUMPS, MA48, Krylov
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RF device modeling · The InterOP project

InterReg � InterOP · Nonlinearities · IP3

BPF

f
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Interferers
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signal
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1

OIP3

Continuous wave interferers at frequencies f1 and f2

Nonlinear intermodulation distortion at frequencies 2f1− f2 and
2f2− f1 falling inband

Sophisticated �lter techniques required
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RF device modeling · The InterOP project

Modeling Perspective

IP3 is basically a Taylor series expansion of 3rd order

Dynamical e�ects (memory) is not taken into account

Frequency domain: generalizations of S-params: X-params

X-params: measurement equipment and behavioral modeling tools
available

Behavioral modeling techniques do not �t measurements well
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RF device modeling · The InterOP project

Current and future work

Behavioral modeling techniques incorporating memory e�ects

Floquet theory approach resulting theory of dynamical systems

Volterra series

DFG/FWF project: THz devices employing plasma oscillations
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RF device modeling · The InterOP project

The circuit simulator LinzFrame

Solver Interface

(direct/iterative)

Sparse Linear Nonlinear

Solver

LinzFrame

Transient

Steady State

Envelope

ModelsAnalysis

multi−rate HB

multi−rate

multi−rate HB

multi−rate BDFx

spline−wavelet

PSS spline−wavelet

GUI

tran DASPK

RWTH ITHE

Interface

MATLAB SPICE Netlist

Parser

tran BDFx

tran spline-wavelet

PSS shooting
Coupling

Circuit/ Circuit/

DeviceDevice

Coupling

Circuit/

Digital

VBIC model

Laplace model

Simkit library

BSIMx library

Stimulus library

model library

SPICE Transistor

Device Simulation Device Simulation

Circuit · Device ·Mixed Signal

Differentiation Suite

Automatic

Coupling

MAGWEL

Mixed Signal

Analog-Digital

model library

Linear device

DAE solver · PDE solver

AC, DC
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