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LinzFrame Simulator Overview

@ LinzFrame Simulator Overview

© Design requirements

© Multi-rate methods

@ Mixed-signal circuit and electromagnetic field simulation

© RF device modeling - The InterOP project



The Mixed-Level Simulator LinzFrame
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Design requirements
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Design requirements

Mismatches - Crosstalk
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Design requirements

Design requirements - Mirror signals

PSD
mirror signal | aed siond
\
o T

H.G. Brachtendorf (FH-O0)

oB =

mirror signal

wanted signal
Kh ., ‘o

fie f

© 2019 ===

6/ 30



Simulation Perspective

@ Baseband (envelope) and RF signals occur simultaneously - sampling
theorem bottleneck
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Simulation Perspective

@ Baseband (envelope) and RF signals occur simultaneously - sampling
theorem bottleneck

@ Nonlinearities of the devices to be taken into account
@ Lumped and distributed devices on the same die

@ Modeling of nonlinear RF devices from measurements (e.g. X-params)
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Simulation Challenges - Solutions

@ Sampling theorem bottleneck - Multi-rate methods
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Simulation Challenges - Solutions

@ Sampling theorem bottleneck - Multi-rate methods

@ Nonlinearities of the devices - Multi-rate methods for nonlinear
differential equations

@ Lumped and distributed devices - Mixed-level circuit and
electromagnetic field simulation

@ Modeling of nonlinear RF devices from measurements - InterReg
project InterOP
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Multi-rate methods

State of the Art - Equivalent Complex
Baseband Method (ECB)
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@ Unified theoretical treatment of
baseband and bandpass communication
(i. e. GMSK, OFDM)
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State of the Art - Equivalent Complex
Baseband Method (ECB)

o Unified theoretical treatment of

baseband and bandpass communication
(i. e. GMSK, OFDM)

@ Simulation of bandpass systems
independent of the carrier frequency

o Circumventing the bottleneck of
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Multi-rate methods

State of the Art - Equivalent Complex
Baseband Method (ECB)
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@ Unified theoretical treatment of
baseband and bandpass communication
(i. e. GMSK, OFDM)

@ Simulation of bandpass systems
independent of the carrier frequency

o Circumventing the bottleneck of
Shannon’s sampling theorem

@ Method is restricted to LTI systems
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Multi-rate methods

State of the Art - Equivalent Complex
Baseband Method (ECB)
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Multi-rate methods
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State of the Art - Equivalent Complex
Baseband Method (ECB)
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Multi-rate signals - Goals

@ Avoiding the bottleneck of Shannon’s sampling theorem by decoupling
the baseband (envelope) signal from the carrier signal
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Multi-rate signals - Goals

@ Avoiding the bottleneck of Shannon’s sampling theorem by decoupling
the baseband (envelope) signal from the carrier signal

e Generalizing the ECB method for nonlinear systems and nonlinear
differential equations from electronic circuits

e Method shall be compatible with standard circuit simulators (i.e.
SPICE) employing the Modified Nodal Analysis (MNA)

e State of the art device models (BSIM, MEXTRAM etc.) including
Jacobians

@ Therefore perturbation methods such as Volterra series are out of
scope since they require higher order derivatives
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Multi-rate signals - bottleneck
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Assumptions: f. > Bpr;

The sampling rate is a factor of 5— 10 larger
than the Nyquist rate;

Simulation over interval of length T > BLNF

fe

Bnr

~» Number of samples: K > 10-

Separation of scales: Introducing a slow time
scale t1, a fast time scale t» and a multirate
waveform X(t1, t2):

~+ K =102 in the domain (t,t,) at the
same accuracy independent of the
frequencies with periodic boundary conditions
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Intermodulation distortion - Spectra

Dense two dimensional
spectrum of the multirate
waveform X(fi, 1)

Sparse one dimensional spectrum X(f)
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Multi-rate methods

Quartz crystal oscillators - Transients
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Highly stiff systems with oscillatory behavior
such as quartz crystal

oscillators etc.

e.g. Pierce oscillator: fip =2 MHz

settling time T, ~ 50ms

~> Number of sampling points:
K~10-T,-fio = 10°
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Multi-rate methods

Nonlinear Multi-rate - The multi-rate
PDE

e Circuit equations (MNA): %q(x(t)) —|—i(x(t)> =s(t), x(0)=xp
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Multi-rate methods

Nonlinear Multi-rate - The multi-rate
PDE

e Circuit equations (MNA): %q(x(t)) —|—i(x(t)> =s(t), x(0)=xp
o Multirate formulation: partial DAE

2q(x(z,1)) + 0(1) &q(*(z, 1)) +i(x(z,1)) = 5(z,t)
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Multi-rate methods

Nonlinear Multi-rate - The multi-rate
PDE

o Circuit equations (MNA): 4

Eq(x(t)) + i(x(t))
o Multirate formulation: partial DAE

%q(&(r, t)) + (1) 2

mq(>“<(1:, t)) + i()?(r, t)) = §<’L’, t)

Qo(t) =0+ [y o(s)ds

S(t), X(O)IXO

o xo(t) = £(£,Q0(1)),

solves
d

2q(x(t)) +i(x(t)) = 5(t,Q0(t))
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Multi-rate methods

Nonlinear Multi-rate - The multi-rate
PDE

o Circuit equations (MNA): 4

Eq(x(t)) + i(x(t))
o Multirate formulation: partial DAE

%q(&(r, t)) + (1) 2

mq(>“<(1:, t)) + i()?(r, t)) = §<’L’, t)

Qo(t) =0+ [y o(s)ds

S(t), X(O)IXO

o xo(t) = £(£,Q0(1)),

solves

@ choose § with §(t,Qo(t)) =s(t)
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The multi-rate PDE - Further
requirements

e Periodicity: X(7,t) = X(7,t+ P) S(z,t) =8(r,t+ P)

@ eg. P=1 P=2mor P= T, (period of carrier)
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The multi-rate PDE - Further
requirements

e Periodicity: X(7,t) = X(7,t+ P) S(z,t) =8(r,t+ P)
@ eg. P=1 P=2mor P= T, (period of carrier)

o Initial values X(0,t) = Xo(t), Xo(0)=xo

Additional unknown (1)

For any wi(7) and wy(7) and corresponding solutions Xi(7,t) and
Ro(7,t) there is an S(7) with

%1(7,t) =% (7.t +5(1))

H.G. Brachtendorf (FH-O0) © 2019 === 16 / 30



The multi-rate PDE - Further
requirements

e Periodicity: X(7,t) = X(7,t+ P) S(z,t) =8(r,t+ P)
@ eg. P=1 P=2mor P= T, (period of carrier)

o Initial values X(0,t) = Xo(t), Xo(0)=xo

Additional unknown (1)

For any wi(7) and wy(7) and corresponding solutions Xi(7,t) and
Ro(7,t) there is an S(7) with

%1(7,t) =% (7.t +5(1))
o Choose w(7) to get optimal smoothness!
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The multi-rate PDE - Characteristic
curve
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Solution of ordinary DAE along characteristic curve

(t,Q0(t))

for a family of initial conditions;
specifically 8 = 0 for the solution of the initial value problem X(0) = xg
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Multi-rate methods

2 MHz Pierce quartz crystal oscillator

o
[
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Circuit schematic Instantaneous frequency

Steady state solution Partial DAE solution
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Multi-rate methods

Voltage Controlled Oscillators (VCO)
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x10°

instantaneous frequency
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Multi-rate methods

Folded Mixer

nout
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time domain solution



PLL s(t) =sin 27rf1t—|—
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Mixed-signal circuit and electromagnetic field simulation
g
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Mixed-signal circuit and electromagnetic field simulation

Simulation perspective

@ Distributed devices: 3D electromagnetic field simulation
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Mixed-signal circuit and electromagnetic field simulation

Simulation perspective
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Distributed and (approximately) lumped devices in the same circuit

Standard approach: characterization of distributed devices by
S-params in the frequency domain.

Either by measurements or 3D electromagnetic field simulation
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Mixed-signal circuit and electromagnetic field simulation

Simulation perspective

Distributed devices: 3D electromagnetic field simulation

Distributed and (approximately) lumped devices in the same circuit

Standard approach: characterization of distributed devices by
S-params in the frequency domain.

Either by measurements or 3D electromagnetic field simulation

@ New approach: Mixed-level circuit and field simulation employing
Magwel's field simulator devEM
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Mixed-signal circuit and electromagnetic field simulation

Coupled simulation: © phase shifter balun
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Mixed-signal circuit and electromagnetic field simulation

Balun with power stage

3D balun model % o+ | "
Power stage with single/differential wiring e
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Differential output
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Mixed-signal circuit and electromagnetic field simulation

The Coupled Simulator - Master-Slave

LinzFrame

f()+aa(9 +s(t) =0
x=(v, i)'

MNA - lumped models - netlist (C++)

devEM
device geometries (xml)
Maxwell's equations
—eV-(VV+aA) =p

semiconductor equations
Jo==qn (n-VV - K. Vn)

Jp=—Qup (p-VV+ 4 -Vp)

time discretization

damped Newton

x=(V, AT
devEM
spatia discretization (FIT)
holistically coupled problem
coupled circuit - EM - device model
g(x dx )=0
LinzFrame nonlinear solve linear solve

MUMPS, MA48, Krylov

AC, DC, trans, multirate
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InterReg — InterOP - Nonlinearities - IP3

Pout /(dBm)

oIPg|
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o Continuous wave interferers at frequencies f; and 5

@ Nonlinear intermodulation distortion at frequencies 2f; — > and
2f, — f; falling inband
@ Sophisticated filter techniques required
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Modeling Perspective

@ IP3 is basically a Taylor series expansion of 3rd order

H.G. Brachtendorf (FH-O0) © 2019 === 28 / 30



Modeling Perspective

@ IP3 is basically a Taylor series expansion of 3rd order

e Dynamical effects (memory) is not taken into account

H.G. Brachtendorf (FH-O0) © 2019 === 28 / 30



Modeling Perspective

@ IP3 is basically a Taylor series expansion of 3rd order
e Dynamical effects (memory) is not taken into account

e Frequency domain: generalizations of S-params: X-params

H.G. Brachtendorf (FH-O0) © 2019 =" 28 / 30



Modeling Perspective

@ IP3 is basically a Taylor series expansion of 3rd order
e Dynamical effects (memory) is not taken into account
e Frequency domain: generalizations of S-params: X-params

@ X-params: measurement equipment and behavioral modeling tools
available

H.G. Brachtendorf (FH-O0) © 2019 === 28 / 30



Modeling Perspective

IP3 is basically a Taylor series expansion of 3rd order
Dynamical effects (memory) is not taken into account

Frequency domain: generalizations of S-params: X-params

X-params: measurement equipment and behavioral modeling tools
available

Behavioral modeling techniques do not fit measurements well
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Current and future work

@ Behavioral modeling techniques incorporating memory effects

H.G. Brachtendorf (FH-O0) © 2019 === 29 / 30



Current and future work

@ Behavioral modeling techniques incorporating memory effects

@ Floquet theory approach resulting theory of dynamical systems

H.G. Brachtendorf (FH-O0) © 2019 =" 29 / 30



Current and future work

@ Behavioral modeling techniques incorporating memory effects
@ Floquet theory approach resulting theory of dynamical systems

@ Volterra series

H.G. Brachtendorf (FH-O0) © 2019 === 29 / 30



Current and future work

@ Behavioral modeling techniques incorporating memory effects
@ Floquet theory approach resulting theory of dynamical systems
@ Volterra series

e DFG/FWF project: THz devices employing plasma oscillations
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device model

The circuit simulator LinzFrame
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e N Solver Interface GUI
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